Search
πŸ“š

Publication

STREAM Lab

Paper

2025

β€’
Kim, D.†, Kim, S.†, Jung, J.†, Kim, J., Choi, S., SchΓΆn, C.-F., Lee, C., Lim, H., Jeong, J., Yu, S., Jeong, Y., Lee, H., Kim, S., Nam, D., Eom, I., Jang, D., Kim, K. S., Im, S., Han, S.βˆ—, Kim, H.βˆ—, & Cho, M.-H.βˆ— Nonmelting Disordering Facilitated by Electron Delocalization ACS nano 19, 9317-9326 (2025)

2024

β€’
Jung, J., An, H., Lee, J. & Han, S.βˆ— Modified activation-relaxation technique (ARTn) method tuned for efficient identification of transition states in surface reactions J. Chem. Theory Comput. 20, 8024 (2024)
β€’
Lee, J.†, Ju, S.†, Hwang, S., You, J., Jung, J., Kang, Y. & Han, S.βˆ— Disorder-dependent Li diffusion in Li6PS5Cl investigated by machine learning potential ACS Appl. Mater. Interface 16, 46442 (2024)
β€’
Kim, J.†, Jung, J.†, Kim, S. & Han, S.βˆ— Predicting melting temperature of inorganic crystals via crystal graph neural network enhanced by transfer learning Comput. Mater. Sci. 234, 112783 (2024)

2023

β€’
Hong, C.†, Kim, J.†, Kim, J., Jung, J., Ju, S., Choi, J. M. & Han, S.βˆ— Applications and training sets of machine learning potentials Sci. Technol. Adv. Mater.: Methods 3, 2269948 (2023)
β€’
Jung, J.†, Ju, S.†, Kim, P.-H., Hong, D., Jeong, W., Lee, J., Han, S.βˆ— & Kang, S.βˆ— Electrochemical degradation of Pt3Co nanoparticles investigated by off-lattice kinetic Monte Carlo simulations with machine-learned potentials ACS Catal. 13, 16078–16087 (2023)
β€’
Hwang, S., Jung, J., Hong, C., Jeong, W., Kang, S.βˆ— & Han, S.βˆ— Stability and equilibrium structures of unknown ternary metal oxides explored by machine-learned potentials J. Am. Chem. Soc. 145, 19378–19386 (2023) [Supplementary cover]

2022

β€’
Kim, S., An, H., Oh, S., Jung, J., Kim, B., Nam, S. K. & Han, S.βˆ— Atomistic kinetic Monte Carlo simulation on atomic layer deposition of TiN thin film Comput. Mater. Sci. 231, 111620 (2022)

2021

β€’
Yoo, D.†, Jung, J.†, Jeong, W. & Han, S.βˆ— Metadynamics sampling in atomic environment space for collecting training data for machine learning potentials npj Comput. Mater. 7, 131 (2021)

2020

β€’
Hong, C.†, Choi, J. M.†, Jeong, W.†, Kang, S.†, Ju, S., Lee, K., Jung, J., Youn, Y. & Han, S.βˆ— Training machine-learning potentials for crystal structure prediction using disordered structures Phys. Rev. B 102, 224104 (2020)
β€’
Youn, Y., Lee, M., Hong, C., Kim, D., Kim, S., Jung, J., Kim, Y. & Han, S.βˆ— AMP2: A fully automated program for ab initio calculations of crystalline materials Comput. Phys. Commun. 256, 107450 (2020)
β€’
Jeong, W., Yoo, D., Lee, K., Jung, J. & Han, S.* Efficient atomic-resolution uncertainty estimation for neural network potentials using a replica ensemble J. Phys. Chem. Lett. 11, 6090–6096 (2020) [Supplementary cover]

Patent