Paper
2025
β’
Kim, D.β , Kim, S.β , Jung, J.β , Kim, J., Choi, S., SchΓΆn, C.-F., Lee, C., Lim, H., Jeong, J., Yu, S., Jeong, Y., Lee, H., Kim, S., Nam, D., Eom, I., Jang, D., Kim, K. S., Im, S., Han, S.β, Kim, H.β, & Cho, M.-H.β
Nonmelting Disordering Facilitated by Electron Delocalization
ACS nano 19, 9317-9326 (2025)
2024
β’
Jung, J., An, H., Lee, J. & Han, S.β
Modified activation-relaxation technique (ARTn) method tuned for efficient identification of transition states in surface reactions
J. Chem. Theory Comput. 20, 8024 (2024)
β’
Lee, J.β , Ju, S.β , Hwang, S., You, J., Jung, J., Kang, Y. & Han, S.β
Disorder-dependent Li diffusion in Li6PS5Cl investigated by machine learning potential
ACS Appl. Mater. Interface 16, 46442 (2024)
β’
Kim, J.β , Jung, J.β , Kim, S. & Han, S.β
Predicting melting temperature of inorganic crystals via crystal graph neural network enhanced by transfer learning
Comput. Mater. Sci. 234, 112783 (2024)
2023
β’
Hong, C.β , Kim, J.β , Kim, J., Jung, J., Ju, S., Choi, J. M. & Han, S.β
Applications and training sets of machine learning potentials
Sci. Technol. Adv. Mater.: Methods 3, 2269948 (2023)
β’
Jung, J.β , Ju, S.β , Kim, P.-H., Hong, D., Jeong, W., Lee, J., Han, S.β & Kang, S.β
Electrochemical degradation of Pt3Co nanoparticles investigated by off-lattice kinetic Monte Carlo simulations with machine-learned potentials
ACS Catal. 13, 16078β16087 (2023)
β’
Hwang, S., Jung, J., Hong, C., Jeong, W., Kang, S.β & Han, S.β
Stability and equilibrium structures of unknown ternary metal oxides explored by machine-learned potentials
J. Am. Chem. Soc. 145, 19378β19386 (2023) [Supplementary cover]
2022
β’
Kim, S., An, H., Oh, S., Jung, J., Kim, B., Nam, S. K. & Han, S.β
Atomistic kinetic Monte Carlo simulation on atomic layer deposition of TiN thin film
Comput. Mater. Sci. 231, 111620 (2022)
2021
β’
Yoo, D.β , Jung, J.β , Jeong, W. & Han, S.β
Metadynamics sampling in atomic environment space for collecting training data for machine learning potentials
npj Comput. Mater. 7, 131 (2021)
2020
β’
Hong, C.β , Choi, J. M.β , Jeong, W.β , Kang, S.β , Ju, S., Lee, K., Jung, J., Youn, Y. & Han, S.β
Training machine-learning potentials for crystal structure prediction using disordered structures
Phys. Rev. B 102, 224104 (2020)
β’
Youn, Y., Lee, M., Hong, C., Kim, D., Kim, S., Jung, J., Kim, Y. & Han, S.β
AMP2: A fully automated program for ab initio calculations of crystalline materials
Comput. Phys. Commun. 256, 107450 (2020)
β’
Jeong, W., Yoo, D., Lee, K., Jung, J. & Han, S.*
Efficient atomic-resolution uncertainty estimation for neural network potentials using a replica ensemble
J. Phys. Chem. Lett. 11, 6090β6096 (2020) [Supplementary cover]